BINOMIAL EXPANSIONS

WorkNotes

BINOMIAL EXPANSIONS

Table of Contents (Click on links)

Distributive Property Difference of 2 squares Perfect Squares Other binomial expansions Multiple Steps

BINOMIAL EXPANSIONS

Distributive Property

Multiplication distributes over addition. That is, the product of a sum is the sum of the products.

Example 1

Solution	Explanations
2(3 <i>d</i> + 4)	Each term inside the brackets is multiplied by the number outside the brackets. Note. Since there is no sign between the 2 and the bracket, it is a multiplication. 2(3d+4)
= 6d + 8	$2 \times 3d = 6d \text{ and } 2 \times 4 = 8$

Example 2

Solution	Explanations
<i>m</i> (4 <i>m</i> - 5)	Each term inside the brackets is multiplied by the number outside the brackets. Note. Since there is no sign between the <i>m</i> and the bracket, it is a multiplication. m(4m - 5)
$= 4m^2 - 5m$	$m \times 4m = 4m^2$ and $m \times -5 = -5m$ Note The minus sign between the two terms in the expression results from the second product being negative.

Solution	Explanations
2 <i>a</i> (3 <i>a</i> - 4 <i>d</i>)	Each term inside the brackets is multiplied by the number outside the brackets. Note. Since there is no sign between the <i>m</i> and the bracket, it is a multiplication.
$= 6a^2 - 8ad$	$2a \times 3a = 6a^2$ and $2a \times -4d = -8ad$

Difference of 2 squares

A product of <u>conjugates</u> will expand to a Difference of Two Squares.

Conjugates are binomial expressions that only by the sign separating the two terms in the binomial expressions.

Eg. (u - 8) and (u + 8) are conjugates

(8u - k) and (8u + k) are conjugates

Square the first – Square the second

Example 1

Solution	Explanations
	Square the first – Square the second.
(u - 8)(u + 8)	$u^2 = (u)^2$ and $64 = (8)^2$ i.e. $(u)^2 - (8)^2 = u^2 - 64$
$= u^2 - 64$	

Example 2

Solution	Explanations
(5k - 6v)(5k + 6v)	Square the first – Square the second. $(k)^2 = k^2$ and $(5)^2 = 25$ $(v)^2 = v^2$ and $(6)^2 = 36$ i.e. $(5)^2(k)^2 - (6)^2(v)^2 = 25k^2 - 36v^2$
$= 25k^2 - 36v^2$	

Perfect Squares

Perfect squares result from the squaring of a binomial expression.

Eg. $(t+5)^2 = t^2 + 10t + 25$

Square the first + Double the Product + Square the second

Solution	Explanations
	Square the first + Double the Product + Square the second.
$(h + 8)^2$	$(h)^2 = h^2 + 2 \times h \times 8 = 16h \text{ and } (8)^2 = 64$
$= h^2 + 16h + 64$	

Example 2

Solution	Explanations
	Square the first + Double the Product + Square the second.
$(4a - 5s)^2$	$16 = (4)^2 = 16 \text{ and } (a)^2 = a^2$ and $2 \times 4a \times -5s = -40as$ and $(5)^2 = 25$ and $(s)^2 = s^2$
	<i>i.e.</i> $(4a)^2 + (2 \times 4a \times -5s) + (5s)^2$
$= 16a^2 - 40as + 25s^2$	

Other binomial expansions

Quadratic trinomials are either monic or non-monic. The Binomial expansion leading to them are carried out differently.

Note:

l)
)
10)
)
)
4

Monic

Monic binomial expansions can be expanded by repetition of the distributive property.

Solution	Explanations
(<i>b</i> - 9)(<i>b</i> - 12)	$= (\overrightarrow{b} - 9)(\overrightarrow{b} - 12)$ $= \overrightarrow{b(b - 12)} - 9(\overrightarrow{b} - 12)$
$= b^2 - 12b - 9b + 108$	Collect the like terms (simplify)
$= b^2 - 21b + 108$	

An alternate 'in your head' method.

Square the pronumeral + Sum of constants × pronumeral + Product of constants

Example 1

Solution	Explanations
	Square the pronumeral + Sum of constants × pronumeral + Product of constants
(<i>b</i> - 9)(<i>b</i> - 12)	$(b)^2 = b^2$ and $(-9 + -12) \times b = -21b$ and $(-9 \times -12) = 108$
$= b^2 - 21b + 108$	

Example 2

Solution	Explanations
	Square the pronumeral + Sum of constants × pronumeral + Product of constants
(m+5)(m-8)	$(m)^2 = m^2$ and $(5 + -8) \times m = -3m$ and $(5 \times -8) = -40$
$= m^2 - 3m - 40$	

Non-Monic trinomials

Non-monic binomial expansions are expanded by repetition of the distributive property.

Solution	Explanations
(2a - 5d)(3a - 4d)	= (2a - 5d)(3a - 4d) $= 2a(3a - 4d) - 5d(3a - 4d)$
$= 6a^2 - 8ad - 15ad + 20d^2$	Collect the like terms (simplify)
$= 6a^2 - 23ad + 20d^2$	

Multiple Steps

Some expansions can have more than two parts. Also, there are trinomial expansions, etc.

Example 1

Solution	Explanations
2(m+3)(m+12)	Multiply the two binomials
$= 2(m^2 + 15m + 36)$	Multiply the product by 2
$= 2m^2 + 30m + 72$	

Solution	Explanations
(m+3)(m+12)(m-1)	Multiply the first two binomials
$= (m^2 + 15m + 36) (m - 1)$	Multiply the product by the third binomial
$= m^3 + 15m^2 + 36m - m^2 - 15m - 36$	Collect like terms. (simplify)
$= m^3 + 14m^2 + 21m - 36$	