FACTORISING QUADRATIC TRINOMIALS

WorkNotes

WorkBook FACTORISATION

Common Factors

Common factors are numbers or pronumerals that can be wholly divided into each part of an expression.

Example 1

Explanations
Both 6 and 8 are divisible by 2.
$6 \div 2 = 3 \text{ and } 8 \div 2 = 4$
The common factor, in this case 2, is written in front of the brackets and the quotients are written
inside the brackets.
$6d \div 2 = 3d \text{ and } 8 \div 2 = 4$

Example 2

Solution	Explanations
$4m^2 - 5m$	Both m^2 and m are divisible by m . $m^2 \div m = m \text{ and } m \div m = 1$
= m(4m - 5)	The common factor, in this case <i>m</i> , is written in front of the brackets and the quotients are written inside the brackets. $4m^2 \div 4m = m \text{ and } 5m \div m = 5$

Solution	Explanations
$6a^2$ - $8ad$	Both $6a^2$ and $8ad$ are divisible by 2 and a. $a^2 \div a = a \text{ and } a \div a = 1$ $6 \div 2 = 3 \text{ and } 8 \div 2 = 4$
= 2a(3a - 4d)	The common factor, in this case 2 <i>a</i> , is written in front of the brackets and the quotients are written inside the brackets. $6a^2 \div 2a = 3a \text{ and } 8ad \div 2a = 4d$

Grouping

Grouping is used to factorise expressions with 4 or more terms.

Example 1

Solution	Explanations
ac + ad + bc + bd	The expression is separated into two parts. In most cases this will not require re-arranging. ac + ad / + bc + bd
= a(c+d) + b(c+d)	Each part of the expression is factorised, removing common factors. (See above)
= (c+d)(a+b)	$a(\underline{c+d}) + b(\underline{c+d})$ It can be seen that $(c+d)$ is a common factor. Remove this common factor.

Example 2

Solution	Explanations
$15t^3 - 9t^2 + 25t - 15$	The expression is separated into two parts. In most cases this will not require re-arranging. $15t^3 - 9t^2 / + 25t - 15$
$= 3t^2(5t-3) + 5(5t-3)$	Each part of the expression is factorised, removing common factors. (<i>See above</i>)
$= (5t-3)(3t^2+5)$	$3t^{2}(5t-3) + 5(5t-3)$ It can be seen that $(5t-3)$ is a common factor. Remove this common factor.

Quadratic Expressions

Quadratic Factorisation		
ALWAYS remove Common Factors First		
2 Terms	Difference of 2 Squares	<i>4u² - 49</i>
2 Tours	Monic Trinomial	$b^2 - 21b + 108$
3 Terms	Non-Monic Trinomial	$40v^2 - 71v + 21$
4 Terms (or More) Grouping		$15t^3 - 9t^2 + 25t - 15$

Difference of 2 squares

A Difference of Two Squares will factorise to a product of <u>conjugates</u>.

Conjugates are binomial expressions that only by the sign separating the two terms in the binomial expressions. Eg. (u - 8) and (u + 8) are conjugates

(8u - k) and (8u + k) are conjugates

Example 1

Solution	Explanations
<i>u</i> ² - 64	The two terms separated by the minus sign are both squares. $u^2 = (u)^2$ and $64 = (8)^2$ i.e. $u^2 - 64 = (u)^2 - (8)^2$
= (u - 8)(u + 8)	Each bracket contains the square roots, one bracket has a negative sign and the other bracket has a positive sign.

Example 2

Solution	Explanations
$25k^2 - 36v^2$	The two terms separated by the minus sign are both squares. $k^2 = (k)^2$ and $25 = (5)^2$ $v^2 = (v)^2$ and $36 = (6)^2$ i.e. $25k^2 - 36v^2 = (5)^2(k)^2 - (6)^2(v)^2$
= (5k - 6v)(5k + 6v)	Each bracket contains the square roots, one bracket has a negative sign and the other bracket has a positive sign.

Perfect Squares

Perfect squares result from the squaring of a binomial expression.

Eg. $(t+5)^2 = t^2 + 10t + 25$

Solution	Explanations
$h^2 + 16h + 64$	To be a perfect square the expression must contain two squared terms, and the remaining term should be double the product of the two square roots. $h^{2} = (h)^{2} \text{ and } 64 = (8)^{2}$ $\underline{and} \ 2 \times h \times 8 = 16h$
$= (h+8)^2$	The solution is a bracket that contains the two square roots separated by the same sign as the middle sign of the trinomial.

Example 2

Solution	Explanations
$16a^2 - 40as + 25s^2$	To be a perfect square the expression must contain two squared terms, and the remaining term should be double the product of the two square roots. $16 = (4)^{2} \text{ and } a^{2} = (a)^{2}$ $25 = (5)^{2} \text{ and } s^{2} = (s)^{2}$ $and 2 \times 4a \times 5s = 40as$ $i.e. (4a)^{2} - (2 \times 4a \times 5s) + (5s)^{2}$
$= (4a - 5s)^2$	The solution is a bracket that contains the two square roots separated by the same sign as the middle sign of the trinomial.

Quadratic trinomials

Quadratic trinomials are of the form $ax^2 + bx + c$ where *a*, *b*, and *c* are real numbers and a > 0. Two special cases, Difference of 2 Squares (which are quadratic binomials) and Perfect Squares (which are quadratic trinomials), have special factorisation methods as outlined above.

Quadratic trinomials are either monic or non-monic. They are factorised differently.

Note:

Monic means one	b^2 - 21 b + 108	(the coefficient of b^2 is 1)
Non-monic means "not one"	$40k^2$ - $57k + 20j^2$	(the coefficient of k^2 is 40)

Monic

Solution	Explanations
$b^2 - 21b + 108$	If the trinomial factorises, each bracket will contain a <i>b</i> .
= (b)(b)	The constant is $+108$ (the + is important) What are the two numbers that multiply to give 108 and <u>add</u> to 21? (don't worry about the -21 yet) +108 9 12 Write two brackets containing this information.
= (<i>b</i> 9)(<i>b</i> 12)	Because 108 is positive, the two numbers have the same sign. Because the middle term is negative, both numbers are negative.
= (b - 9)(b - 12)	Insert the signs.

Example 2

Solution	Explanations
$m^2 - 3m - 40$	If the trinomial factorises, each bracket will contain an <i>m</i> .
= (m)(m)	The constant is -40 (the - is important) What are the two numbers that multiply to give 40 and <u>subtract</u> to 3? (don't worry about the -3 yet) -40 5 8 Write two brackets containing this information.
$= (m \ 5)(m \ 8)$	Because 40 is negative, the two numbers have different signs. Because the middle term is negative, the 'bigger' number is negative. -40 +5 -8 By 'bigger', we refer to the magnitude or size of the number. However, remember 5 > -8.
= (m+5)(m-8)	Insert the signs.

Non-Monic

Solution	Explanations
$5x^2 + 11x + 6$	Multiply the <u>leading co-efficient</u> and the <u>constant</u> . i.e. $5 \times 6 = +30$. (the + is important)
	What are the two numbers that multiply to give 30 and <u>add</u> to 30? (don't worry about the +11 yet) $\frac{30}{56}$
$= 5x^2 + 5x + 6x + 6$	Because 30 is positive, the two numbers have the same sign. Because the middle term is positive, the two numbers are positive. +30 +5 +6 Rewrite the expression, separating the middle term into two parts, using these factors.
= 5x(x+1) + 6(x+1)	Use grouping to factorise this 4 term expression
= (x+1)(5x+6)	

Solution	Explanations
54g ² - 3g - 35	Multiply the <u>leading co-efficient</u> and the <u>constant</u> . i.e. $54 \times -35 = -1890$. (the - is important)
	What are the two numbers that multiply to give 1890 and <u>subtract</u> to 3? (don't worry about the -3 yet) 1890 35 54 = 19 45 42 = 3
$= 54g^2 - 45g + 42g - 35$	Because 1890 is negative, the two numbers have different signs. Because the middle term is negative, the 'bigger' number is negative. $^{-1890}_{-45}$ $^{-1890}_{-45}$ By 'bigger', we refer to the magnitude or size of the number. However, remember 42 > -45. Rewrite the expression, separating the middle term into two parts, using these factors.
= 9g(6g - 5) + 7(6g - 5)	Use grouping to factorise this 4 term expression
= (6g - 5)(9g + 7)	

Mutiple Steps Some expressions can be factorised using more then one of the above methods. Remember to always look for common factors first.

Solution	Explanations
$2m^2 + 30m + 72$	All terms are divisible by 2. (2 is a common factor.
$2(m^2+15m+36)$	The bracket contains a monic trinomial. If the trinomial factorises, each bracket will contain an <i>m</i> .
= 2(m)(m)	The constant is $+36$ (the + is important) What are the two numbers that multiply to give 36 and <u>add</u> to 15? (don't worry about the +15 yet) +36 3 12 Write two brackets containing this information.
$= 2(m \ 3)(m \ 12)$	Because 36 is positive, the two numbers have the same sign. Because the middle term is positive, both numbers are positive. +36 +3 +12
= 2(m+3)(m+12)	Insert the signs.