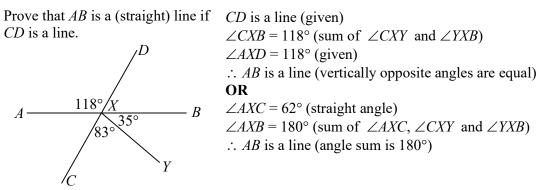
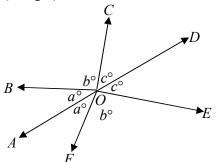
GEOMETRY Further Deduction

WorkNotes


Table of Contents (Click on links)

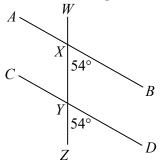
Straight line results. Parallel lines Triangles. Quadrilaterals

WorkBook DEDUCTIVE GEOMETRY


Methods for finding values, determining a relationship or completing proofs in questions where vertices are given.

Straight line results. Example 1

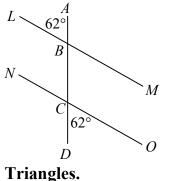
Example 2


Determine which two rays form a (straight) line

 $a^{\circ} + b^{\circ} + c^{\circ} + b^{\circ} + a^{\circ} = 360^{\circ} \text{ (given)}$ $2(a^{\circ} + b^{\circ} + c^{\circ}) = 360^{\circ}$ $a^{\circ} + b^{\circ} + c^{\circ} = 180^{\circ}$ $\angle AOD = a^{\circ} + b^{\circ} + c^{\circ} \text{ (sum of } \angle AOB, \angle BOC \text{ and } \angle COD)$ $\therefore AD \text{ is a line (angle sum is 180^{\circ})}$

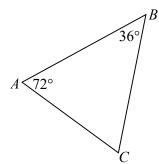
Parallel lines Example 3

Prove that *AB* is parallel to *CD*.



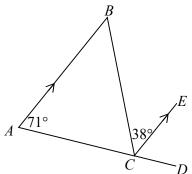
 $\angle YXB = 54^{\circ}$ (given) $\angle ZYD = 54^{\circ}$ (given) $\therefore AB \| CD$ (corresponding angles are equal)

Example 4


Example 5

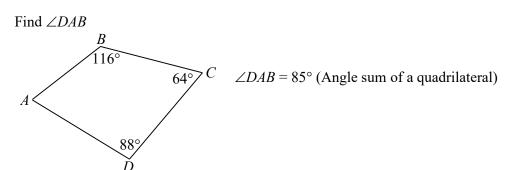
Prove that *LM* is parallel to *NO*.

 $\angle NCB = 62^{\circ}$ (vertically opposite to $\angle DCO$) $\angle ZYD = 62^{\circ}$ (given) $\therefore LM || NO$ (corresponding angles are equal) **OR** $\angle CBM = 62^{\circ}$ (vertically opposite to $\angle LBA$) $\angle DCO = 62^{\circ}$ (given) $\therefore LM || NO$ (corresponding angles are equal)


Prove that $\triangle ABC$ is isosceles.

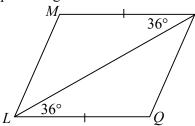
 $\angle ACB = 72^{\circ}$ (angle sum of a triangle) $\angle ABC = 72^{\circ}$ (given) $\therefore \Delta ABC$ is isosceles (a pair of equal angles)

Example 6


Prove that $\triangle ABC$ is isosceles.

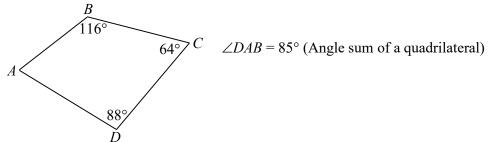
 $\angle ABC = 38^{\circ}$ (alternate angles, AB||CE) $\angle ACB = 71^{\circ}$ (angle sum of a triangle) $\angle CAB = 71^{\circ}$ (given) $\therefore \Delta ABC$ is isosceles (a pair of equal angles)

Quadrilaterals

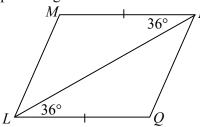

Example 7

Р

Example 8


Prove that *MPQL* is a parallelogram.

 $\angle MPL = 36^{\circ}$ (given) $\angle QLP = 36^{\circ}$ (given) $\therefore MP || QL$ (alternate angles are equal) MP = QL (given) $\therefore MPQL$ is a parallelogram (opposite sides are parallel and equal)



Find $\angle DAB$

Example 8

Prove that *MPQL* is a parallelogram.

 $\angle MPL = 36^{\circ} \text{ (given)}$ $\angle QLP = 36^{\circ} \text{ (given)}$ $\therefore MP || QL \text{ (alternate angles are equal)}$ MP = QL (given) $\therefore MPQL \text{ is a parallelogram (opposite sides are parallel and equal)}$